... where LIFE SCIENCE
meets PHYSICS

Ein Blick in die Zukunft der Tropenwälder

Tropische Wälder sind ein Hotspot der Artenvielfalt. Auch vor dem Hintergrund des Klimawandels spielt ihr Schutz eine besondere Rolle. Dabei ist es wichtig vorherzusagen, wie sich so artenreiche Waldbestände über Jahrzehnte oder gar Jahrhunderte verändern. Genau dies ist nun Forschern des Deutschen Zentrums für integrative Biodiversitätsforschung (iDiv), der Universität Leipzig (UL) und weiterer internationaler Forschungseinrichtungen gelungen. Die Ergebnisse haben sie im Fachmagazin Science veröffentlicht.

Seit 1982 werden auf Barro Colorado Island über 200.000 Bäume im Abstand von fünf Jahren ver-messen. (© Christian Ziegler)

An keinem Ort der Welt schreitet der Verlust ursprünglicher Wälder, sogenannter Primärwälder, so schnell voran wie in den Tropen. Die natürlichen Urwälder müssen Flächen für Ackerbau und Viehzucht weichen. Bei ihrer Rodung gehen wichtige Lebensräume verloren. Außerdem wird der in den Bäumen gespeicherte Kohlenstoff als CO2 freigesetzt. Wenn die gerodeten Flächen nicht mehr genutzt werden, wachsen auf ihnen neue Wälder, sogenannte Sekundärwälder. Sie binden einen Teil des freigesetzten CO2. Die Förderung solcher natürlichen Waldflächen kann daher eine preiswerte Möglichkeit darstellen, klimaschädliches CO2 aus der Atmosphäre zu binden und gleichzeitig die biologische Vielfalt zu fördern.

Doch nicht alle Wälder entwickeln sich gleich. Um Erholung und Renaturierung tropischer Wälder zu steuern, muss man vorhersagen können, wie sich Wälder entwickeln. Dafür müssen verschiedene Parameter bekannt sein: Wie schnell wachsen die Bäume – und wie schnell sterben sie? Wie viele Nachkommen produzieren sie, die ihrerseits wiederum den Bestand der Art sichern? Genau diese Daten wurden in einem der am besten erforschten tropischen Regenwälder der Welt in Panama über die letzten knapp 40 Jahre für 282 Baumarten erfasst.

Anhand dieser Daten konnten Forscher zeigen, dass Bäume in ihrer Entwicklung unterschiedliche Strategien verfolgen. Zum einen unterscheiden sie sich hinsichtlich ihres Lebenstempos: Während „schnelle“ Arten schnell wachsen und schnell wieder sterben, wachsen „langsame“ Arten langsam und erreichen ein hohes Alter. Zum anderen unterscheiden sie sich – davon unabhängig – in ihrer Wuchshöhe: „Unfruchtbare Riesen“, auch langlebige Pioniere genannt, erreichen eine große Wuchshöhe, wachsen relativ schnell, produzieren aber nur wenige Nachkommen pro Jahr. Demgegenüber stehen die „fruchtbaren Zwerge“: kleine Sträucher und niedrige Bäume, die langsam wachsen und schnell wieder sterben, aber eine Vielzahl an Nachkommen produzieren.

Doch welche und wie viele Aspekte dieser demografischen Vielfalt müssen berücksichtigt werden, um die Entwicklung eines Waldes vorhersagen zu können? Diese Frage wollte ein internationales Forschungsteam mithilfe eines digitalen Experimentes beantworten. In einem Computermodell simulierten sie, wie im realen Wald Bäume wachsen, sterben, Nachkommen produzieren und um Licht konkurrieren. Dabei ließen sie verschiedene Konfigurationen des Modells gegeneinander antreten. Diese enthielten entweder alle 282 Arten aus Panama oder nur wenige ausgewählte „Strategietypen“. Die Arten unterschieden sich entweder nur hinsichtlich einer Strategie, nämlich ihres Lebenstempos, oder zusätzlich auch hinsichtlich ihrer Wuchshöhe. Die jeweiligen Modellvorhersagen verglichen sie mit der beobachteten Entwicklung echter nachwachsender Sekundärwälder.

Die Forscher fanden heraus, dass ihr Modell mit lediglich fünf Strategietypen zuverlässig funktionierte. Dabei müssen jedoch unbedingt die beiden Strategieachsen Lebenstempo und Wuchshöhe berücksichtigt werden. „Die langlebigen Pioniere sind besonders wichtig, denn sie machen einen Großteil der Biomasse – und des gespeicherten Kohlenstoffes – in dieser Art Wald aus. Und das während aller Entwicklungsstadien und nicht, wie bisher angenommen, nur in mittelalten Wäldern“, erklärt Erstautorin Dr. Nadja Rüger, Nachwuchsgruppenleiterin bei iDiv und UL.

Nach jahrelanger Forschung, konnten Rüger und ihre Kollegen nun einen komplett datengetriebenen Modellierungsansatz entwickeln, mit dem man die Entwicklung artenreicher Wälder vorhersagen kann. Dieser kommt ohne die normalerweise notwendige langwierige Anpassung und Kalibrierung unbekannter Modellparameter aus und spart somit Zeit und Ressourcen. „Wir reduzieren quasi den Wald auf seine Essenz. Und das war nur möglich, weil wir über die Baumarten in dem Wald in Panama so viel wissen“, meint Rüger.

Wälder werden nicht nur stark durch den Klimawandel beeinflusst, sie können dessen Tempo auch deutlich verringern. Schätzungen zufolge nimmt die Vegetation auf der Erde etwa 34 % der Kohlenstoffmoleküle auf, die wir ausstoßen – pro Jahr. Doch Wissenschaftler sind sich nicht sicher, ob wir zukünftig weiterhin auf diese wichtige Funktion der Ökosysteme zählen können. „Indem wir besser vorhersagen können, wie sich die Kohlenstoffspeicher und die natürliche Vielfalt der tropischen Wälder entwickeln, sind wir aber auf dem richtigen Weg“, meint Co-Autorin Prof. Caroline Farrioir von der Universität Texas. „So können wir wichtige ökologische Prozesse sehr viel genauer in den globalen Modellen abbilden, die von politischen Entscheidungsträgern dafür genutzt werden, das Tempo des Klimawandels abzuschätzen.“

 

Originalpublikation
Nadja Rüger, Richard Condit, Daisy H. Dent, Saara J. DeWalt, Stephen P. Hubbell, Jeremy W.Lichstein, Omar R. Lopez, Christian Wirth, Caroline E. Farrior (2020). Demographic tradeoffs predict tropical forest dynamics.

Science XX, DOI: 10.1126/science.aaz4797
https://science.sciencemag.org/cgi/doi/10.1126/science.aaz4797